1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
//!Types for interpolation between multiple colors.

use num::{Float, One, Zero};
use std::cmp::max;
use approx::ApproxEq;

use flt;

use Mix;

///A linear interpolation between colors.
///
///It's used to smoothly transition between a series of colors, that can be
///either evenly spaced or have customized positions. The gradient is
///continuous between the control points, but it's possible to iterate over a
///number of evenly spaced points using the `take` method. Any point outside
///the domain of the gradient will have the same color as the closest control
///point.
#[derive(Clone, Debug)]
pub struct Gradient<C: Mix + Clone>(Vec<(C::Scalar, C)>);

impl<C: Mix + Clone> Gradient<C> {
    ///Create a gradient of evenly spaced colors with the domain [0.0, 1.0].
    ///There must be at least one color.
    pub fn new<I: IntoIterator<Item = C>>(colors: I) -> Gradient<C> {
        let mut points: Vec<_> = colors.into_iter().map(|c| (C::Scalar::zero(), c)).collect();
        assert!(points.len() > 0);
        let step_size = C::Scalar::one() / flt(max(points.len() - 1, 1) as f64);

        for (i, &mut (ref mut p, _)) in points.iter_mut().enumerate() {
            *p = flt::<C::Scalar, _>(i) * step_size;
        }

        Gradient(points)
    }

    ///Create a gradient of colors with custom spacing and domain. There must be
    ///at least one color and they are expected to be ordered by their
    ///position value.
    pub fn with_domain(colors: Vec<(C::Scalar, C)>) -> Gradient<C> {
        assert!(colors.len() > 0);

        //Maybe sort the colors?
        Gradient(colors)
    }

    ///Get a color from the gradient. The color of the closest control point
    ///will be returned if `i` is outside the domain.
    pub fn get(&self, i: C::Scalar) -> C {
        let &(mut min, ref min_color) = self.0.get(0).expect("a Gradient must contain at least one color");
        let mut min_color = min_color;
        let mut min_index = 0;

        if i <= min {
            return min_color.clone();
        }

        let &(mut max, ref max_color) = self.0.last().expect("a Gradient must contain at least one color");
        let mut max_color = max_color;
        let mut max_index = self.0.len() - 1;

        if i >= max {
            return max_color.clone();
        }

        while min_index < max_index - 1 {
            let index = min_index + (max_index - min_index) / 2;

            let (p, ref color) = self.0[index];

            if i <= p {
                max = p;
                max_color = color;
                max_index = index;
            } else {
                min = p;
                min_color = color;
                min_index = index;
            }
        }

        let factor = (i - min) / (max - min);

        min_color.mix(max_color, factor)
    }

    ///Take `n` evenly spaced colors from the gradient, as an iterator.
    pub fn take(&self, n: usize) -> Take<C> {
        let (min, max) = self.domain();

        Take {
            gradient: MaybeSlice::NotSlice(self),
            from: min,
            diff: max - min,
            len: n,
            current: 0,
        }
    }

    ///Slice this gradient to limit its domain.
    pub fn slice<R: Into<Range<C::Scalar>>>(&self, range: R) -> Slice<C> {
        Slice {
            gradient: self,
            range: range.into(),
        }
    }

    ///Get the limits of this gradient's domain.
    pub fn domain(&self) -> (C::Scalar, C::Scalar) {
        let &(min, _) = self.0.get(0).expect("a Gradient must contain at least one color");
        let &(max, _) = self.0.last().expect("a Gradient must contain at least one color");
        (min, max)
    }
}

///An iterator over interpolated colors.
#[derive(Clone)]
pub struct Take<'a, C: Mix + Clone + 'a> {
    gradient: MaybeSlice<'a, C>,
    from: C::Scalar,
    diff: C::Scalar,
    len: usize,
    current: usize,
}

impl<'a, C: Mix + Clone> Iterator for Take<'a, C> {
    type Item = C;

    fn next(&mut self) -> Option<C> {
        if self.current < self.len {
            let i = self.from + (self.diff / flt(self.len)) * flt(self.current);
            self.current += 1;
            Some(self.gradient.get(i))
        } else {
            None
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len - self.current, Some(self.len - self.current))
    }
}

impl<'a, C: Mix + Clone> ExactSizeIterator for Take<'a, C> {}


///A slice of a Gradient that limits its domain.
#[derive(Clone, Debug)]
pub struct Slice<'a, C: Mix + Clone + 'a> {
    gradient: &'a Gradient<C>,
    range: Range<C::Scalar>,
}

impl<'a, C: Mix + Clone> Slice<'a, C> {
    ///Get a color from the gradient slice. The color of the closest domain
    ///limit will be returned if `i` is outside the domain.
    pub fn get(&self, i: C::Scalar) -> C {
        self.gradient.get(self.range.clamp(i))
    }

    ///Take `n` evenly spaced colors from the gradient slice, as an iterator.
    pub fn take(&self, n: usize) -> Take<C> {
        let (min, max) = self.domain();

        Take {
            gradient: MaybeSlice::Slice(self.clone()),
            from: min,
            diff: max - min,
            len: n,
            current: 0,
        }
    }

    ///Slice this gradient slice to further limit its domain. Ranges outside
    ///the domain will be clamped to the nearest domain limit.
    pub fn slice<R: Into<Range<C::Scalar>>>(&self, range: R) -> Slice<C> {
        Slice {
            gradient: self.gradient,
            range: self.range.constrain(&range.into())
        }
    }

    ///Get the limits of this gradient slice's domain.
    pub fn domain(&self) -> (C::Scalar, C::Scalar) {
        if let Range { from: Some(from), to: Some(to) } = self.range {
            (from, to)
        } else {
            let (from, to) = self.gradient.domain();
            (self.range.from.unwrap_or(from), self.range.to.unwrap_or(to))
        }
    }
}

///A domain range for gradient slices.
#[derive(Clone, Debug, PartialEq)]
pub struct Range<T: Float> {
    from: Option<T>,
    to: Option<T>,
}

impl<T: Float> Range<T> {
    fn clamp(&self, mut x: T) -> T {
        x = self.from.unwrap_or(x).max(x);
        self.to.unwrap_or(x).min(x)
    }

    fn constrain(&self, other: &Range<T>) -> Range<T> {
        if let (Some(f), Some(t)) = (other.from, self.to) {
            if f >= t {
                return Range {
                    from: self.to,
                    to: self.to,
                };
            }
        }


        if let (Some(t), Some(f)) = (other.to, self.from) {
            if t <= f {
                return Range {
                    from: self.from,
                    to: self.from,
                };
            }
        }

        Range {
            from: match (self.from, other.from) {
                (Some(s), Some(o)) => Some(s.max(o)),
                (Some(s), None) => Some(s),
                (None, Some(o)) => Some(o),
                (None, None) => None,
            },
            to: match (self.to, other.to) {
                (Some(s), Some(o)) => Some(s.min(o)),
                (Some(s), None) => Some(s),
                (None, Some(o)) => Some(o),
                (None, None) => None,
            },
        }
    }
}

impl<T: Float> From<::std::ops::Range<T>> for Range<T> {
    fn from(range: ::std::ops::Range<T>) -> Range<T> {
        Range {
            from: Some(range.start),
            to: Some(range.end),
        }
    }
}

impl<T: Float> From<::std::ops::RangeFrom<T>> for Range<T> {
    fn from(range: ::std::ops::RangeFrom<T>) -> Range<T> {
        Range {
            from: Some(range.start),
            to: None,
        }
    }
}

impl<T: Float> From<::std::ops::RangeTo<T>> for Range<T> {
    fn from(range: ::std::ops::RangeTo<T>) -> Range<T> {
        Range {
            from: None,
            to: Some(range.end),
        }
    }
}

impl<T: Float> From<::std::ops::RangeFull> for Range<T> {
    fn from(_range: ::std::ops::RangeFull) -> Range<T> {
        Range {
            from: None,
            to: None,
        }
    }
}

impl<T> ApproxEq for Range<T> where
    T: ApproxEq + Float,
    T::Epsilon: Copy,
{
    type Epsilon = T::Epsilon;

    fn default_epsilon() -> Self::Epsilon {
        T::default_epsilon()
    }

    fn default_max_relative() -> Self::Epsilon {
        T::default_max_relative()
    }

    fn default_max_ulps() -> u32 {
        T::default_max_ulps()
    }

    fn relative_eq(&self, other: &Range<T>, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool {
        let from = match (self.from, other.from) {
            (Some(s), Some(o)) => s.relative_eq(&o, epsilon, max_relative),
            (None, None) => true,
            _ => false,
        };

        let to = match (self.to, other.to) {
            (Some(s), Some(o)) => s.relative_eq(&o, epsilon, max_relative),
            (None, None) => true,
            _ => false,
        };

        from && to
    }

    fn ulps_eq(&self, other: &Range<T>, epsilon: Self::Epsilon, max_ulps: u32) -> bool{
        let from = match (self.from, other.from) {
            (Some(s), Some(o)) => s.ulps_eq(&o, epsilon, max_ulps),
            (None, None) => true,
            _ => false,
        };

        let to = match (self.to, other.to) {
            (Some(s), Some(o)) => s.ulps_eq(&o, epsilon, max_ulps),
            (None, None) => true,
            _ => false,
        };

        from && to
    }
}

#[derive(Clone)]
enum MaybeSlice<'a, C: Mix + Clone + 'a> {
    NotSlice(&'a Gradient<C>),
    Slice(Slice<'a, C>),
}

impl<'a, C: Mix + Clone> MaybeSlice<'a, C> {
    fn get(&self, i: C::Scalar) -> C {
        match *self {
            MaybeSlice::NotSlice(g) => g.get(i),
            MaybeSlice::Slice(ref s) => s.get(i),
        }
    }
}

#[cfg(test)]
mod test {
    use super::{Range, Gradient};
    use Rgb;

    #[test]
    fn range_clamp() {
        let range: Range<f64> = (0.0..1.0).into();
        assert_eq!(range.clamp(-1.0), 0.0);
        assert_eq!(range.clamp(2.0), 1.0);
        assert_eq!(range.clamp(0.5), 0.5);
    }

    #[test]
    fn range_constrain() {
        let range: Range<f64> = (0.0..1.0).into();
        assert_eq!(range.constrain(&(-3.0..-5.0).into()), (0.0..0.0).into());
        assert_eq!(range.constrain(&(-3.0..0.8).into()), (0.0..0.8).into());

        assert_eq!(range.constrain(&(3.0..5.0).into()), (1.0..1.0).into());
        assert_eq!(range.constrain(&(0.2..5.0).into()), (0.2..1.0).into());

        assert_eq!(range.constrain(&(0.2..0.8).into()), (0.2..0.8).into());
    }

    #[test]
    fn simple_slice() {
        let g1 = Gradient::new(vec![Rgb::new(1.0, 0.0, 0.0), Rgb::new(0.0, 0.0, 1.0)]);
        let g2 = g1.slice(..0.5);

        let v1: Vec<_> = g1.take(10).take(5).collect();
        let v2: Vec<_> = g2.take(5).collect();
        for (t1, t2) in v1.iter().zip(v2.iter()){
            assert_relative_eq!(t1, t2);
        }
    }
}