1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
//! A library that makes linear color calculations and conversion easy and
//! accessible for anyone. It uses the type system to enforce correctness and to
//! avoid mistakes, such as mixing incompatible color types.
//!
//! # Where Do I Start?
//!
//! The sections below give an overview of how the types in this library work,
//! including color conversion. If you want to get your hands dirty, you'll
//! probably want to start with [`Srgb`] or [`Srgba`]. They are aliases for the
//! more generic [`Rgb`](rgb::Rgb) type and represent sRGB(A), the most common
//! RGB format in images and tools. Their documentation has more details and
//! examples.
//!
//! The documentation for each module and type goes deeper into their concepts.
//! Here are a few you may want to read:
//!
//! * [`Rgb`](rgb::Rgb) - For getting started with RGB values.
//! * [`Alpha`] - For more details on transparency.
//! * [`convert`] - Describes the conversion traits and how to use and implement
//!   them.
//! * [`cast`] - Describes how to cast color types to and from other data
//!   formats, such as arrays and unsigned integers.
//! * [`color_difference`] - Describes different ways of measuring the
//!   difference between colors.
//!
//! # Type Safety for Colors
//!
//! Digital colors are not "just RGB", and not even RGB is "just RGB". There are
//! multiple representations of color, with a variety of pros and cons, and
//! multiple standards for how to encode and decode them. Palette represents
//! these "color spaces" as separate types for increased expressiveness and to
//! prevent mistakes.
//!
//! Taking RGB as an example, it's often stored or displayed as "gamma
//! corrected" values, meaning that a non-linear function has been applied to
//! its values. This encoding is not suitable for all kinds of calculations
//! (such as rescaling) and will give visibly incorrect results. Functions that
//! require linear RGB can therefore request, for example, [`LinSrgb`] as their
//! input type.
//!
//! ```rust,compile_fail
//! // Srgb is an alias for Rgb<Srgb, T>, which is what most pictures store.
//! // LinSrgb is an alias for Rgb<Linear<Srgb>, T>, better for color manipulation.
//! use palette::{Srgb, LinSrgb};
//!
//! fn do_something(a: LinSrgb, b: LinSrgb) -> LinSrgb {
//! // ...
//! # LinSrgb::default()
//! }
//!
//! let orangeish = Srgb::new(1.0, 0.6, 0.0);
//! let blueish = Srgb::new(0.0, 0.2, 1.0);
//! let result = do_something(orangeish, blueish); // Does not compile
//! ```
//!
//! The colors will have to be decoded before being used in the function:
//!
//! ```rust
//! // Srgb is an alias for Rgb<Srgb, T>, which is what most pictures store.
//! // LinSrgb is an alias for Rgb<Linear<Srgb>, T>, better for color manipulation.
//! use palette::{Srgb, LinSrgb};
//!
//! fn do_something(a: LinSrgb, b: LinSrgb) -> LinSrgb {
//! // ...
//! # LinSrgb::default()
//! }
//!
//! let orangeish = Srgb::new(1.0, 0.6, 0.0).into_linear();
//! let blueish = Srgb::new(0.0, 0.2, 1.0).into_linear();
//! let result = do_something(orangeish, blueish);
//! ```
//!
//! See the [rgb] module for a deeper dive into RGB and (non-)linearity.
//!
//! # Color Spaces and Conversion
//!
//! As the previous section mentions, there are many different ways of
//! representing colors. These "color spaces" are represented as different types
//! in Palette, each with a description of what it is and how it works. Most of
//! them also have two type parameters for customization:
//!
//! * The component type (`T`) that decides which number type is used. The
//!   default is `f32`, but `u8`, `f64`, and any other type that implement the
//!   required traits will work. Including SIMD types in many cases.
//! * The reference white point (`W`) or standard (`S`) that affects the range,
//!   encoding or display properties of the color. This varies between color
//!   spaces and can usually be left as its default or be set via a type alias.
//!   For example, the [`Srgb`] and [`LinSrgb`] type aliases are both variants
//!   of the [`Rgb`][rgb::Rgb] type, but with different standard (`S`) types.
//!
//! Selecting the proper color space can have a big impact on how the resulting
//! image looks (as illustrated by some of the programs in `examples`), and
//! Palette makes the conversion between them as easy as a call to
//! [`from_color`][FromColor::from_color] or
//! [`into_color`][IntoColor::into_color].
//!
//! This example takes an sRGB color, converts it to CIE L\*C\*h°, a color space
//! similar to the colloquial HSL/HSV color spaces, shifts its hue by 180° and
//! converts it back to RGB:
//!
//! ```
//! use palette::{FromColor, ShiftHue, IntoColor, Lch, Srgb};
//!
//! let lch_color: Lch = Srgb::new(0.8, 0.2, 0.1).into_color();
//! let new_color = Srgb::from_color(lch_color.shift_hue(180.0));
//! ```
//!
//! # Transparency
//!
//! There are many cases where pixel transparency is important, but there are
//! also many cases where it would just be unused memory space. Palette has
//! therefore adopted a structure where the transparency component (alpha) is
//! attachable using the [`Alpha`] type. This approach has shown to be very
//! modular and easy to maintain, compared to having transparent copies of each
//! type.
//!
//! An additional benefit is allowing operations to selectively affect the alpha
//! component:
//!
//! ```rust
//! // Each color type has a transparent alias that ends with "a" for "alpha"
//! use palette::{LinSrgb, LinSrgba};
//!
//! let mut c1 = LinSrgba::new(1.0, 0.5, 0.5, 0.8);
//! let c2 = LinSrgb::new(0.5, 1.0, 1.0);
//!
//! c1.color = c1.color * c2; //Leave the alpha as it is
//! c1.blue += 0.2; //The color components can easily be accessed
//! c1 = c1 * 0.5; //Scale both the color and the alpha
//! ```
//!
//! There's also [`PreAlpha`][blend::PreAlpha] that represents pre-multiplied
//! alpha (also known as alpha masked colors). It's commonly used in color
//! blending and composition.
//!
//! # Images and Buffers
//!
//! Oftentimes, pixel data is stored in a plain array or slice such as a `[u8;
//! 3]`. The [`cast`] module allows for easy conversion between Palette colors
//! and arrays or slices. This also helps when working with other crates or
//! systems. Here's an example of how the pixels in an image from the `image`
//! crate can be worked with as `Srgb<u8>`:
//!
//! ```rust
//! use image::RgbImage;
//! use palette::{Srgb, Oklab, cast::FromComponents, Lighten, IntoColor, FromColor};
//!
//! fn lighten(image: &mut RgbImage, amount: f32) {
//!     // RgbImage can be dereferenced as [u8], allowing us to cast it as a
//!     // component slice to sRGB with u8 components.
//!     for pixel in <&mut [Srgb<u8>]>::from_components(&mut **image) {
//!         // Converting to linear sRGB with f32 components, and then to Oklab.
//!         let color: Oklab = pixel.into_linear::<f32>().into_color();
//!
//!         let lightened_color = color.lighten(amount);
//!
//!         // Converting back to non-linear sRGB with u8 components.
//!         *pixel = Srgb::from_linear(lightened_color.into_color());
//!     }
//! }
//! ```
//!
//! Some of the conversions are also implemented on the color types as `From`,
//! `TryFrom`, `Into`, `TryFrom` and `AsRef`. This example shows how `from` can
//! be used to convert a `[u8;3]` into a Palette color, `into_format` converts
//! from  `Srgb<u8>` to `Srgb<f32>`, and finally `into` converts back from a
//! Palette color back to a `[u8;3]`:
//!
//! ```rust
//! use approx::assert_relative_eq;
//! use palette::Srgb;
//!
//! let buffer = [255, 0, 255];
//! let srgb = Srgb::from(buffer);
//! assert_eq!(srgb, Srgb::<u8>::new(255u8, 0, 255));
//!
//! let srgb_float: Srgb<f32> = srgb.into_format();
//! assert_relative_eq!(srgb_float, Srgb::new(1.0, 0.0, 1.0));
//!
//! let array: [u8; 3] = srgb_float.into_format().into();
//! assert_eq!(array, buffer);
//! ```
//!
//! # A Basic Workflow
//!
//! The overall workflow can be divided into three steps, where the first and
//! last may be taken care of by other parts of the application:
//!
//! ```text
//! Decoding -> Processing -> Encoding
//! ```
//!
//! ## 1. Decoding
//!
//! Find out what the source format is and convert it to a linear color space.
//! There may be a specification, such as when working with SVG or CSS.
//!
//! When working with RGB or gray scale (luma):
//!
//! * If you are asking your user to enter an RGB value, you are in a gray zone
//! where it depends on the context. It's usually safe to assume sRGB, but
//! sometimes it's already linear.
//!
//! * If you are decoding an image, there may be some meta data that gives you
//! the necessary details. Otherwise it's most commonly sRGB. Usually you will
//! end up with a slice or vector with RGB bytes, which can easily be converted
//! to Palette colors:
//!
//! ```rust
//! # let mut image_buffer: Vec<u8> = vec![];
//! use palette::{Srgb, cast::ComponentsAsMut};
//!
//! // This works for any color type (not only RGB) that can have the
//! // buffer element type as component.
//! let color_buffer: &mut [Srgb<u8>] = image_buffer.components_as_mut();
//! ```
//!
//! * If you are getting your colors from the GPU, in a game or other graphical
//! application, or if they are otherwise generated by the application, then
//! chances are that they are already linear. Still, make sure to check that
//! they are not being encoded somewhere.
//!
//! When working with other colors:
//!
//! * For HSL, HSV, HWB: Check if they are based on any other color space than
//! sRGB, such as Adobe or Apple RGB.
//!
//! * For any of the CIE color spaces, check for a specification of white point
//! and light source. These are necessary for converting to RGB and other
//! colors, that depend on perception and "viewing devices". Common defaults are
//! the D65 light source and the sRGB white point. The Palette defaults should
//! take you far.
//!
//! ## 2. Processing
//!
//! When your color has been decoded into some Palette type, it's ready for
//! processing. This includes things like blending, hue shifting, darkening and
//! conversion to other formats. Just make sure that your non-linear RGB is made
//! linear first (`my_srgb.into_linear()`), to make the operations available.
//!
//! Different color spaced have different capabilities, pros and cons. You may
//! have to experiment a bit (or look at the example programs) to find out what
//! gives the desired result.
//!
//! ## 3. Encoding
//!
//! When the desired processing is done, it's time to encode the colors back
//! into some image format. The same rules applies as for the decoding, but the
//! process reversed.

// Keep the standard library when running tests, too
#![cfg_attr(all(not(feature = "std"), not(test)), no_std)]
#![doc(html_root_url = "https://docs.rs/palette/0.7.6/")]
#![warn(missing_docs)]

#[cfg(feature = "alloc")]
extern crate alloc;

#[cfg(any(feature = "std", test))]
extern crate core;

#[cfg(feature = "approx")]
#[cfg_attr(test, macro_use)]
extern crate approx;

#[macro_use]
extern crate palette_derive;

#[cfg(feature = "phf")]
extern crate phf;

#[cfg(feature = "serializing")]
#[macro_use]
extern crate serde as _;
#[cfg(all(test, feature = "serializing"))]
extern crate serde_json;

use core::ops::{BitAndAssign, Neg};

use bool_mask::{BoolMask, HasBoolMask};
use luma::Luma;

#[doc(inline)]
pub use alpha::{Alpha, WithAlpha};

#[doc(inline)]
pub use hsl::{Hsl, Hsla};
#[doc(inline)]
pub use hsluv::{Hsluv, Hsluva};
#[doc(inline)]
pub use hsv::{Hsv, Hsva};
#[doc(inline)]
pub use hwb::{Hwb, Hwba};
#[doc(inline)]
pub use lab::{Lab, Laba};
#[doc(inline)]
pub use lch::{Lch, Lcha};
#[doc(inline)]
pub use lchuv::{Lchuv, Lchuva};
#[doc(inline)]
pub use luma::{GammaLuma, GammaLumaa, LinLuma, LinLumaa, SrgbLuma, SrgbLumaa};
#[doc(inline)]
pub use luv::{Luv, Luva};
#[doc(inline)]
pub use okhsl::{Okhsl, Okhsla};
#[doc(inline)]
pub use okhsv::{Okhsv, Okhsva};
#[doc(inline)]
pub use okhwb::{Okhwb, Okhwba};
#[doc(inline)]
pub use oklab::{Oklab, Oklaba};
#[doc(inline)]
pub use oklch::{Oklch, Oklcha};
#[doc(inline)]
pub use rgb::{GammaSrgb, GammaSrgba, LinSrgb, LinSrgba, Srgb, Srgba};
#[doc(inline)]
pub use xyz::{Xyz, Xyza};
#[doc(inline)]
pub use yxy::{Yxy, Yxya};

#[doc(inline)]
pub use hues::{LabHue, LuvHue, OklabHue, RgbHue};

#[allow(deprecated)]
pub use color_difference::ColorDifference;
pub use convert::{FromColor, FromColorMut, FromColorMutGuard, IntoColor, IntoColorMut};
pub use matrix::Mat3;
#[allow(deprecated)]
pub use relative_contrast::{contrast_ratio, RelativeContrast};

#[macro_use]
mod macros;

#[cfg(feature = "named")]
pub mod named;

#[cfg(feature = "random")]
mod random_sampling;

#[cfg(feature = "serializing")]
pub mod serde;

pub mod alpha;
pub mod angle;
pub mod blend;
pub mod bool_mask;
pub mod cam16;
pub mod cast;
pub mod chromatic_adaptation;
pub mod color_difference;
pub mod color_theory;
pub mod convert;
pub mod encoding;
pub mod hsl;
pub mod hsluv;
pub mod hsv;
pub mod hues;
pub mod hwb;
pub mod lab;
pub mod lch;
pub mod lchuv;
pub mod luma;
pub mod luv;
mod luv_bounds;
pub mod num;
mod ok_utils;
pub mod okhsl;
pub mod okhsv;
pub mod okhwb;
pub mod oklab;
pub mod oklch;
mod relative_contrast;
pub mod rgb;
pub mod stimulus;
pub mod white_point;
pub mod xyz;
pub mod yxy;

#[cfg(test)]
#[cfg(feature = "approx")]
mod visual;

#[doc(hidden)]
pub mod matrix;

#[inline]
fn clamp<T: num::Clamp>(value: T, min: T, max: T) -> T {
    value.clamp(min, max)
}

#[inline]
fn clamp_assign<T: num::ClampAssign>(value: &mut T, min: T, max: T) {
    value.clamp_assign(min, max);
}

#[inline]
fn clamp_min<T: num::Clamp>(value: T, min: T) -> T {
    value.clamp_min(min)
}

#[inline]
fn clamp_min_assign<T: num::ClampAssign>(value: &mut T, min: T) {
    value.clamp_min_assign(min);
}

/// Checks if color components are within their expected range bounds.
///
/// A color with out-of-bounds components may be clamped with [`Clamp`] or
/// [`ClampAssign`].
///
/// ```
/// use palette::{Srgb, IsWithinBounds};
/// let a = Srgb::new(0.4f32, 0.3, 0.8);
/// let b = Srgb::new(1.2f32, 0.3, 0.8);
/// let c = Srgb::new(-0.6f32, 0.3, 0.8);
///
/// assert!(a.is_within_bounds());
/// assert!(!b.is_within_bounds());
/// assert!(!c.is_within_bounds());
/// ```
///
/// `IsWithinBounds` is also implemented for `[T]`:
///
/// ```
/// use palette::{Srgb, IsWithinBounds};
///
/// let my_vec = vec![Srgb::new(0.4f32, 0.3, 0.8), Srgb::new(0.8, 0.5, 0.1)];
/// let my_array = [Srgb::new(0.4f32, 0.3, 0.8), Srgb::new(1.3, 0.5, -3.0)];
/// let my_slice = &[Srgb::new(0.4f32, 0.3, 0.8), Srgb::new(1.2, 0.3, 0.8)];
///
/// assert!(my_vec.is_within_bounds());
/// assert!(!my_array.is_within_bounds());
/// assert!(!my_slice.is_within_bounds());
/// ```
pub trait IsWithinBounds: HasBoolMask {
    /// Check if the color's components are within the expected range bounds.
    ///
    /// ```
    /// use palette::{Srgb, IsWithinBounds};
    /// assert!(Srgb::new(0.8f32, 0.5, 0.2).is_within_bounds());
    /// assert!(!Srgb::new(1.3f32, 0.5, -3.0).is_within_bounds());
    /// ```
    fn is_within_bounds(&self) -> Self::Mask;
}

impl<T> IsWithinBounds for [T]
where
    T: IsWithinBounds,
    T::Mask: BoolMask + BitAndAssign,
{
    #[inline]
    fn is_within_bounds(&self) -> Self::Mask {
        let mut result = Self::Mask::from_bool(true);

        for item in self {
            result &= item.is_within_bounds();

            if result.is_false() {
                break;
            }
        }

        result
    }
}

/// An operator for restricting a color's components to their expected ranges.
///
/// [`IsWithinBounds`] can be used to check if the components are within their
/// range bounds.
///
/// See also [`ClampAssign`].
///
/// ```
/// use palette::{Srgb, IsWithinBounds, Clamp};
///
/// let unclamped = Srgb::new(1.3f32, 0.5, -3.0);
/// assert!(!unclamped.is_within_bounds());
///
/// let clamped = unclamped.clamp();
/// assert!(clamped.is_within_bounds());
/// assert_eq!(clamped, Srgb::new(1.0, 0.5, 0.0));
/// ```
pub trait Clamp {
    /// Return a new color where out-of-bounds components have been changed to
    /// the nearest valid values.
    ///
    /// ```
    /// use palette::{Srgb, Clamp};
    /// assert_eq!(Srgb::new(1.3, 0.5, -3.0).clamp(), Srgb::new(1.0, 0.5, 0.0));
    /// ```
    #[must_use]
    fn clamp(self) -> Self;
}

/// An assigning operator for restricting a color's components to their expected
/// ranges.
///
/// [`IsWithinBounds`] can be used to check if the components are within their
/// range bounds.
///
/// See also [`Clamp`].
///
/// ```
/// use palette::{Srgb, IsWithinBounds, ClampAssign};
///
/// let mut color = Srgb::new(1.3f32, 0.5, -3.0);
/// assert!(!color.is_within_bounds());
///
/// color.clamp_assign();
/// assert!(color.is_within_bounds());
/// assert_eq!(color, Srgb::new(1.0, 0.5, 0.0));
/// ```
///
/// `ClampAssign` is also implemented for `[T]`:
///
/// ```
/// use palette::{Srgb, ClampAssign};
///
/// let mut my_vec = vec![Srgb::new(0.4, 0.3, 0.8), Srgb::new(1.3, 0.5, -3.0)];
/// let mut my_array = [Srgb::new(0.4, 0.3, 0.8), Srgb::new(1.3, 0.5, -3.0)];
/// let mut my_slice = &mut [Srgb::new(0.4, 0.3, 0.8), Srgb::new(1.2, 0.3, 0.8)];
///
/// my_vec.clamp_assign();
/// my_array.clamp_assign();
/// my_slice.clamp_assign();
/// ```
pub trait ClampAssign {
    /// Changes out-of-bounds components to the nearest valid values.
    ///
    /// ```
    /// use palette::{Srgb, ClampAssign};
    ///
    /// let mut color = Srgb::new(1.3, 0.5, -3.0);
    /// color.clamp_assign();
    /// assert_eq!(color, Srgb::new(1.0, 0.5, 0.0));
    /// ```
    fn clamp_assign(&mut self);
}

impl<T> ClampAssign for [T]
where
    T: ClampAssign,
{
    #[inline]
    fn clamp_assign(&mut self) {
        self.iter_mut().for_each(T::clamp_assign);
    }
}

/// Linear color interpolation of two colors.
///
/// See also [`MixAssign`].
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{LinSrgb, Mix};
///
/// let a = LinSrgb::new(0.0, 0.5, 1.0);
/// let b = LinSrgb::new(1.0, 0.5, 0.0);
///
/// assert_relative_eq!(a.mix(b, 0.0), a);
/// assert_relative_eq!(a.mix(b, 0.5), LinSrgb::new(0.5, 0.5, 0.5));
/// assert_relative_eq!(a.mix(b, 1.0), b);
/// ```
pub trait Mix {
    /// The type of the mixing factor.
    type Scalar;

    /// Mix the color with an other color, by `factor`.
    ///
    /// `factor` should be between `0.0` and `1.0`, where `0.0` will result in
    /// the same color as `self` and `1.0` will result in the same color as
    /// `other`.
    #[must_use]
    fn mix(self, other: Self, factor: Self::Scalar) -> Self;
}

/// Assigning linear color interpolation of two colors.
///
/// See also [`Mix`].
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{LinSrgb, MixAssign};
///
/// let mut a = LinSrgb::new(0.0, 0.5, 1.0);
/// let b = LinSrgb::new(1.0, 0.5, 0.0);
///
/// a.mix_assign(b, 0.5);
/// assert_relative_eq!(a, LinSrgb::new(0.5, 0.5, 0.5));
/// ```
pub trait MixAssign {
    /// The type of the mixing factor.
    type Scalar;

    /// Mix the color with an other color, by `factor`.
    ///
    /// `factor` should be between `0.0` and `1.0`, where `0.0` will result in
    /// the same color as `self` and `1.0` will result in the same color as
    /// `other`.
    fn mix_assign(&mut self, other: Self, factor: Self::Scalar);
}

/// Operators for lightening a color.
///
/// The trait's functions are split into two groups of functions: relative and
/// fixed/absolute.
///
/// The relative function, [`lighten`](Lighten::lighten), scales the lightness
/// towards the maximum lightness value. This means that for a color with 50%
/// lightness, if `lighten(0.5)` is applied to it, the color will scale halfway
/// to the maximum value of 100% resulting in a new lightness value of 75%.
///
/// The fixed or absolute function, [`lighten_fixed`](Lighten::lighten_fixed),
/// increase the lightness value by an amount that is independent of the current
/// lightness of the color. So for a color with 50% lightness, if
/// `lighten_fixed(0.5)` is applied to it, the color will have 50% lightness
/// added to its lightness value resulting in a new value of 100%.
///
/// See also [`LightenAssign`], [`Darken`] and [`DarkenAssign`].
pub trait Lighten {
    /// The type of the lighten modifier.
    type Scalar;

    /// Scale the color towards the maximum lightness by `factor`, a value
    /// ranging from `0.0` to `1.0`.
    ///
    /// ```
    /// use approx::assert_relative_eq;
    /// use palette::{Hsl, Lighten};
    ///
    /// let color = Hsl::new_srgb(0.0, 1.0, 0.5);
    /// assert_relative_eq!(color.lighten(0.5).lightness, 0.75);
    /// ```
    #[must_use]
    fn lighten(self, factor: Self::Scalar) -> Self;

    /// Lighten the color by `amount`, a value ranging from `0.0` to `1.0`.
    ///
    /// ```
    /// use approx::assert_relative_eq;
    /// use palette::{Hsl, Lighten};
    ///
    /// let color = Hsl::new_srgb(0.0, 1.0, 0.4);
    /// assert_relative_eq!(color.lighten_fixed(0.2).lightness, 0.6);
    /// ```
    #[must_use]
    fn lighten_fixed(self, amount: Self::Scalar) -> Self;
}

/// Assigning operators for lightening a color.
///
/// The trait's functions are split into two groups of functions: relative and
/// fixed/absolute.
///
/// The relative function, [`lighten_assign`](LightenAssign::lighten_assign),
/// scales the lightness towards the maximum lightness value. This means that
/// for a color with 50% lightness, if `lighten_assign(0.5)` is applied to it,
/// the color will scale halfway to the maximum value of 100% resulting in a new
/// lightness value of 75%.
///
/// The fixed or absolute function,
/// [`lighten_fixed_assign`](LightenAssign::lighten_fixed_assign), increase the
/// lightness value by an amount that is independent of the current lightness of
/// the color. So for a color with 50% lightness, if `lighten_fixed_assign(0.5)`
/// is applied to it, the color will have 50% lightness added to its lightness
/// value resulting in a new value of 100%.
///
/// `LightenAssign` is also implemented for `[T]`:
///
/// ```
/// use palette::{Hsl, LightenAssign};
///
/// let mut my_vec = vec![Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_array = [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_slice = &mut [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(112.0, 0.5, 0.8)];
///
/// my_vec.lighten_assign(0.5);
/// my_array.lighten_assign(0.5);
/// my_slice.lighten_assign(0.5);
/// ```
///
/// See also [`Lighten`], [`Darken`] and [`DarkenAssign`].
pub trait LightenAssign {
    /// The type of the lighten modifier.
    type Scalar;

    /// Scale the color towards the maximum lightness by `factor`, a value
    /// ranging from `0.0` to `1.0`.
    ///
    /// ```
    /// use approx::assert_relative_eq;
    /// use palette::{Hsl, LightenAssign};
    ///
    /// let mut color = Hsl::new_srgb(0.0, 1.0, 0.5);
    /// color.lighten_assign(0.5);
    /// assert_relative_eq!(color.lightness, 0.75);
    /// ```
    fn lighten_assign(&mut self, factor: Self::Scalar);

    /// Lighten the color by `amount`, a value ranging from `0.0` to `1.0`.
    ///
    /// ```
    /// use approx::assert_relative_eq;
    /// use palette::{Hsl, LightenAssign};
    ///
    /// let mut color = Hsl::new_srgb(0.0, 1.0, 0.4);
    /// color.lighten_fixed_assign(0.2);
    /// assert_relative_eq!(color.lightness, 0.6);
    /// ```
    fn lighten_fixed_assign(&mut self, amount: Self::Scalar);
}

impl<T> LightenAssign for [T]
where
    T: LightenAssign,
    T::Scalar: Clone,
{
    type Scalar = T::Scalar;

    #[inline]
    fn lighten_assign(&mut self, factor: Self::Scalar) {
        for color in self {
            color.lighten_assign(factor.clone());
        }
    }

    #[inline]
    fn lighten_fixed_assign(&mut self, amount: Self::Scalar) {
        for color in self {
            color.lighten_fixed_assign(amount.clone());
        }
    }
}

/// Operators for darkening a color;
///
/// The trait's functions are split into two groups of functions: relative and
/// fixed/absolute.
///
/// The relative function, [`darken`](Darken::darken), scales the lightness
/// towards the minimum lightness value. This means that for a color with 50%
/// lightness, if `darken(0.5)` is applied to it, the color will scale halfway
/// to the minimum value of 0% resulting in a new lightness value of 25%.
///
/// The fixed or absolute function, [`darken_fixed`](Darken::darken_fixed),
/// decreases the lightness value by an amount that is independent of the
/// current lightness of the color. So for a color with 50% lightness, if
/// `darken_fixed(0.5)` is applied to it, the color will have 50% lightness
/// removed from its lightness value resulting in a new value of 0%.
///
/// See also [`DarkenAssign`], [`Lighten`] and [`LightenAssign`].
pub trait Darken {
    /// The type of the darken modifier.
    type Scalar;

    /// Scale the color towards the minimum lightness by `factor`, a value
    /// ranging from `0.0` to `1.0`.
    ///
    /// ```
    /// use approx::assert_relative_eq;
    /// use palette::{Hsv, Darken};
    ///
    /// let color = Hsv::new_srgb(0.0, 1.0, 0.5);
    /// assert_relative_eq!(color.darken(0.5).value, 0.25);
    /// ```
    #[must_use]
    fn darken(self, factor: Self::Scalar) -> Self;

    /// Darken the color by `amount`, a value ranging from `0.0` to `1.0`.
    ///
    /// ```
    /// use approx::assert_relative_eq;
    /// use palette::{Hsv, Darken};
    ///
    /// let color = Hsv::new_srgb(0.0, 1.0, 0.4);
    /// assert_relative_eq!(color.darken_fixed(0.2).value, 0.2);
    /// ```
    #[must_use]
    fn darken_fixed(self, amount: Self::Scalar) -> Self;
}

impl<T> Darken for T
where
    T: Lighten,
    T::Scalar: Neg<Output = T::Scalar>,
{
    type Scalar = T::Scalar;

    #[inline]
    fn darken(self, factor: Self::Scalar) -> Self {
        self.lighten(-factor)
    }

    #[inline]
    fn darken_fixed(self, amount: Self::Scalar) -> Self {
        self.lighten_fixed(-amount)
    }
}

/// Assigning operators for darkening a color;
///
/// The trait's functions are split into two groups of functions: relative and
/// fixed/absolute.
///
/// The relative function, [`darken_assign`](DarkenAssign::darken_assign),
/// scales the lightness towards the minimum lightness value. This means that
/// for a color with 50% lightness, if `darken_assign(0.5)` is applied to it,
/// the color will scale halfway to the minimum value of 0% resulting in a new
/// lightness value of 25%.
///
/// The fixed or absolute function,
/// [`darken_fixed_assign`](DarkenAssign::darken_fixed_assign), decreases the
/// lightness value by an amount that is independent of the current lightness of
/// the color. So for a color with 50% lightness, if `darken_fixed_assign(0.5)`
/// is applied to it, the color will have 50% lightness removed from its
/// lightness value resulting in a new value of 0%.
///
/// `DarkenAssign` is also implemented for `[T]`:
///
/// ```
/// use palette::{Hsl, DarkenAssign};
///
/// let mut my_vec = vec![Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_array = [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_slice = &mut [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(112.0, 0.5, 0.8)];
///
/// my_vec.darken_assign(0.5);
/// my_array.darken_assign(0.5);
/// my_slice.darken_assign(0.5);
/// ```
///
/// See also [`Darken`], [`Lighten`] and [`LightenAssign`].
pub trait DarkenAssign {
    /// The type of the darken modifier.
    type Scalar;

    /// Scale the color towards the minimum lightness by `factor`, a value
    /// ranging from `0.0` to `1.0`.
    ///
    /// ```
    /// use approx::assert_relative_eq;
    /// use palette::{Hsv, DarkenAssign};
    ///
    /// let mut color = Hsv::new_srgb(0.0, 1.0, 0.5);
    /// color.darken_assign(0.5);
    /// assert_relative_eq!(color.value, 0.25);
    /// ```
    fn darken_assign(&mut self, factor: Self::Scalar);

    /// Darken the color by `amount`, a value ranging from `0.0` to `1.0`.
    ///
    /// ```
    /// use approx::assert_relative_eq;
    /// use palette::{Hsv, DarkenAssign};
    ///
    /// let mut color = Hsv::new_srgb(0.0, 1.0, 0.4);
    /// color.darken_fixed_assign(0.2);
    /// assert_relative_eq!(color.value, 0.2);
    /// ```
    fn darken_fixed_assign(&mut self, amount: Self::Scalar);
}

impl<T> DarkenAssign for T
where
    T: LightenAssign + ?Sized,
    T::Scalar: Neg<Output = T::Scalar>,
{
    type Scalar = T::Scalar;

    #[inline]
    fn darken_assign(&mut self, factor: Self::Scalar) {
        self.lighten_assign(-factor);
    }

    #[inline]
    fn darken_fixed_assign(&mut self, amount: Self::Scalar) {
        self.lighten_fixed_assign(-amount);
    }
}

/// A trait for colors where a hue may be calculated.
///
/// See also [`WithHue`], [`SetHue`], [`ShiftHue`] and [`ShiftHueAssign`].
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{GetHue, LinSrgb};
///
/// let red = LinSrgb::new(1.0f32, 0.0, 0.0);
/// let green = LinSrgb::new(0.0f32, 1.0, 0.0);
/// let blue = LinSrgb::new(0.0f32, 0.0, 1.0);
/// let gray = LinSrgb::new(0.5f32, 0.5, 0.5);
///
/// assert_relative_eq!(red.get_hue(), 0.0.into());
/// assert_relative_eq!(green.get_hue(), 120.0.into());
/// assert_relative_eq!(blue.get_hue(), 240.0.into());
/// assert_relative_eq!(gray.get_hue(), 0.0.into());
/// ```
pub trait GetHue {
    /// The kind of hue unit this color space uses.
    ///
    /// The hue is most commonly calculated as an angle around a color circle
    /// and may not always be uniform between color spaces. It's therefore not
    /// recommended to take one type of hue and apply it to a color space that
    /// expects an other.
    type Hue;

    /// Calculate a hue if possible.
    ///
    /// Colors in the gray scale has no well defined hue and should preferably
    /// return `0`.
    #[must_use]
    fn get_hue(&self) -> Self::Hue;
}

/// Change the hue of a color to a specific value.
///
/// See also [`SetHue`], [`GetHue`], [`ShiftHue`] and [`ShiftHueAssign`].
///
/// ```
/// use palette::{Hsl, WithHue};
///
/// let green = Hsl::new_srgb(120.0, 1.0, 0.5);
/// let blue = green.with_hue(240.0);
/// assert_eq!(blue, Hsl::new_srgb(240.0, 1.0, 0.5));
/// ```
pub trait WithHue<H> {
    /// Return a copy of `self` with a specific hue.
    #[must_use]
    fn with_hue(self, hue: H) -> Self;
}

/// Change the hue of a color to a specific value without moving.
///
/// See also [`WithHue`], [`GetHue`], [`ShiftHue`] and [`ShiftHueAssign`].
///
/// ```
/// use palette::{Hsl, SetHue};
///
/// let mut color = Hsl::new_srgb(120.0, 1.0, 0.5);
/// color.set_hue(240.0);
/// assert_eq!(color, Hsl::new_srgb(240.0, 1.0, 0.5));
/// ```
///
/// `SetHue` is also implemented for `[T]`:
///
/// ```
/// use palette::{Hsl, SetHue};
///
/// let mut my_vec = vec![Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_array = [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_slice = &mut [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(112.0, 0.5, 0.8)];
///
/// my_vec.set_hue(120.0);
/// my_array.set_hue(120.0);
/// my_slice.set_hue(120.0);
/// ```
pub trait SetHue<H> {
    /// Change the hue to a specific value.
    fn set_hue(&mut self, hue: H);
}

impl<T, H> SetHue<H> for [T]
where
    T: SetHue<H>,
    H: Clone,
{
    fn set_hue(&mut self, hue: H) {
        for color in self {
            color.set_hue(hue.clone());
        }
    }
}

/// Operator for increasing or decreasing the hue by an amount.
///
/// See also [`ShiftHueAssign`], [`WithHue`], [`SetHue`] and [`GetHue`].
///
/// ```
/// use palette::{Hsl, ShiftHue};
///
/// let green = Hsl::new_srgb(120.0, 1.0, 0.5);
/// let blue = green.shift_hue(120.0);
/// assert_eq!(blue, Hsl::new_srgb(240.0, 1.0, 0.5));
/// ```
pub trait ShiftHue {
    /// The type of the hue modifier.
    type Scalar;

    /// Return a copy of `self` with the hue shifted by `amount`.
    #[must_use]
    fn shift_hue(self, amount: Self::Scalar) -> Self;
}

/// Assigning operator for increasing or decreasing the hue by an amount.
///
/// See also [`ShiftHue`], [`WithHue`], [`SetHue`] and [`GetHue`].
///
/// ```
/// use palette::{Hsl, ShiftHueAssign};
///
/// let mut color = Hsl::new_srgb(120.0, 1.0, 0.5);
/// color.shift_hue_assign(120.0);
/// assert_eq!(color, Hsl::new_srgb(240.0, 1.0, 0.5));
/// ```
///
/// `ShiftHueAssign` is also implemented for `[T]`:
///
/// ```
/// use palette::{Hsl, ShiftHueAssign};
///
/// let mut my_vec = vec![Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_array = [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_slice = &mut [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(112.0, 0.5, 0.8)];
///
/// my_vec.shift_hue_assign(120.0);
/// my_array.shift_hue_assign(120.0);
/// my_slice.shift_hue_assign(120.0);
/// ```
pub trait ShiftHueAssign {
    /// The type of the hue modifier.
    type Scalar;

    /// Shifts the hue by `amount`.
    fn shift_hue_assign(&mut self, amount: Self::Scalar);
}

impl<T> ShiftHueAssign for [T]
where
    T: ShiftHueAssign,
    T::Scalar: Clone,
{
    type Scalar = T::Scalar;

    fn shift_hue_assign(&mut self, amount: Self::Scalar) {
        for color in self {
            color.shift_hue_assign(amount.clone());
        }
    }
}

/// Operator for increasing the saturation (or chroma) of a color.
///
/// The trait's functions are split into two groups of functions: relative and
/// fixed/absolute.
///
/// The relative function, [`saturate`](Saturate::saturate), scales the
/// saturation towards the maximum saturation value. This means that for a color
/// with 50% saturation, if `saturate(0.5)` is applied to it, the color will
/// scale halfway to the maximum value of 100% resulting in a new saturation
/// value of 75%.
///
/// The fixed or absolute function,
/// [`saturate_fixed`](Saturate::saturate_fixed), increases the saturation by an
/// amount that is independent of the current saturation of the color. So for a
/// color with 50% saturation, if `saturate_fixed(0.5)` is applied to it, the
/// color will have 50% saturation added to its saturation value resulting in a
/// new value of 100%.
///
/// See also [`SaturateAssign`], [`Desaturate`] and [`DesaturateAssign`].
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsv, Saturate};
///
/// let a = Hsv::new_srgb(0.0, 0.5, 1.0);
///
/// assert_relative_eq!(a.saturate(0.5).saturation, 0.75);
/// assert_relative_eq!(a.saturate_fixed(0.5).saturation, 1.0);
/// ```
pub trait Saturate {
    /// The type of the saturation modifier.
    type Scalar;

    /// Scale the color towards the maximum saturation by `factor`, a value
    /// ranging from `0.0` to `1.0`.
    ///
    /// ```
    /// use approx::assert_relative_eq;
    /// use palette::{Hsl, Saturate};
    ///
    /// let color = Hsl::new_srgb(0.0, 0.5, 0.5);
    /// assert_relative_eq!(color.saturate(0.5).saturation, 0.75);
    /// ```
    #[must_use]
    fn saturate(self, factor: Self::Scalar) -> Self;

    /// Increase the saturation by `amount`, a value ranging from `0.0` to
    /// `1.0`.
    ///
    /// ```
    /// use approx::assert_relative_eq;
    /// use palette::{Hsl, Saturate};
    ///
    /// let color = Hsl::new_srgb(0.0, 0.4, 0.5);
    /// assert_relative_eq!(color.saturate_fixed(0.2).saturation, 0.6);
    /// ```
    #[must_use]
    fn saturate_fixed(self, amount: Self::Scalar) -> Self;
}

/// Assigning operator for increasing the saturation (or chroma) of a color.
///
/// The trait's functions are split into two groups of functions: relative and
/// fixed/absolute.
///
/// The relative function, [`saturate_assign`](SaturateAssign::saturate_assign),
/// scales the saturation towards the maximum saturation value. This means that
/// for a color with 50% saturation, if `saturate_assign(0.5)` is applied to it,
/// the color will scale halfway to the maximum value of 100% resulting in a new
/// saturation value of 75%.
///
/// The fixed or absolute function,
/// [`saturate_fixed_assign`](SaturateAssign::saturate_fixed_assign), increases
/// the saturation by an amount that is independent of the current saturation of
/// the color. So for a color with 50% saturation, if
/// `saturate_fixed_assign(0.5)` is applied to it, the color will have 50%
/// saturation added to its saturation value resulting in a new value of 100%.
///
/// See also [`Saturate`], [`Desaturate`] and [`DesaturateAssign`].
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsv, SaturateAssign};
///
/// let mut relative = Hsv::new_srgb(0.0, 0.5, 1.0);
/// relative.saturate_assign(0.5);
///
/// let mut fixed = Hsv::new_srgb(0.0, 0.5, 1.0);
/// fixed.saturate_fixed_assign(0.5);
///
/// assert_relative_eq!(relative.saturation, 0.75);
/// assert_relative_eq!(fixed.saturation, 1.0);
/// ```
///
/// `SaturateAssign` is also implemented for `[T]`:
///
/// ```
/// use palette::{Hsl, SaturateAssign};
///
/// let mut my_vec = vec![Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_array = [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_slice = &mut [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(112.0, 0.5, 0.8)];
///
/// my_vec.saturate_assign(0.5);
/// my_array.saturate_assign(0.5);
/// my_slice.saturate_assign(0.5);
/// ```
pub trait SaturateAssign {
    /// The type of the saturation modifier.
    type Scalar;

    /// Scale the color towards the maximum saturation by `factor`, a value
    /// ranging from `0.0` to `1.0`.
    ///
    /// ```
    /// use approx::assert_relative_eq;
    /// use palette::{Hsl, SaturateAssign};
    ///
    /// let mut color = Hsl::new_srgb(0.0, 0.5, 0.5);
    /// color.saturate_assign(0.5);
    /// assert_relative_eq!(color.saturation, 0.75);
    /// ```
    fn saturate_assign(&mut self, factor: Self::Scalar);

    /// Increase the saturation by `amount`, a value ranging from `0.0` to
    /// `1.0`.
    ///
    /// ```
    /// use approx::assert_relative_eq;
    /// use palette::{Hsl, SaturateAssign};
    ///
    /// let mut color = Hsl::new_srgb(0.0, 0.4, 0.5);
    /// color.saturate_fixed_assign(0.2);
    /// assert_relative_eq!(color.saturation, 0.6);
    /// ```
    fn saturate_fixed_assign(&mut self, amount: Self::Scalar);
}

impl<T> SaturateAssign for [T]
where
    T: SaturateAssign,
    T::Scalar: Clone,
{
    type Scalar = T::Scalar;

    fn saturate_assign(&mut self, factor: Self::Scalar) {
        for color in self {
            color.saturate_assign(factor.clone());
        }
    }

    fn saturate_fixed_assign(&mut self, amount: Self::Scalar) {
        for color in self {
            color.saturate_fixed_assign(amount.clone());
        }
    }
}

/// Operator for decreasing the saturation (or chroma) of a color.
///
/// The trait's functions are split into two groups of functions: relative and
/// fixed/absolute.
///
/// The relative function, [`desaturate`](Desaturate::desaturate), scales the
/// saturation towards the minimum saturation value. This means that for a color
/// with 50% saturation, if `desaturate(0.5)` is applied to it, the color will
/// scale halfway to the minimum value of 0% resulting in a new saturation value
/// of 25%.
///
/// The fixed or absolute function,
/// [`desaturate_fixed`](Desaturate::desaturate_fixed), decreases the saturation
/// by an amount that is independent of the current saturation of the color. So
/// for a color with 50% saturation, if `desaturate_fixed(0.5)` is applied to
/// it, the color will have 50% saturation removed from its saturation value
/// resulting in a new value of 0%.
///
/// See also [`DesaturateAssign`], [`Saturate`] and [`SaturateAssign`].
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsv, Desaturate};
///
/// let a = Hsv::new_srgb(0.0, 0.5, 1.0);
///
/// assert_relative_eq!(a.desaturate(0.5).saturation, 0.25);
/// assert_relative_eq!(a.desaturate_fixed(0.5).saturation, 0.0);
/// ```
pub trait Desaturate {
    /// The type of the desaturation modifier.
    type Scalar;

    /// Scale the color towards the minimum saturation by `factor`, a value
    /// ranging from `0.0` to `1.0`.
    ///
    /// ```
    /// use approx::assert_relative_eq;
    /// use palette::{Hsv, Desaturate};
    ///
    /// let color = Hsv::new_srgb(0.0, 0.5, 0.5);
    /// assert_relative_eq!(color.desaturate(0.5).saturation, 0.25);
    /// ```
    #[must_use]
    fn desaturate(self, factor: Self::Scalar) -> Self;

    /// Increase the saturation by `amount`, a value ranging from `0.0` to
    /// `1.0`.
    ///
    /// ```
    /// use approx::assert_relative_eq;
    /// use palette::{Hsv, Desaturate};
    ///
    /// let color = Hsv::new_srgb(0.0, 0.4, 0.5);
    /// assert_relative_eq!(color.desaturate_fixed(0.2).saturation, 0.2);
    /// ```
    #[must_use]
    fn desaturate_fixed(self, amount: Self::Scalar) -> Self;
}

impl<T> Desaturate for T
where
    T: Saturate,
    T::Scalar: Neg<Output = T::Scalar>,
{
    type Scalar = T::Scalar;

    #[inline]
    fn desaturate(self, factor: Self::Scalar) -> Self {
        self.saturate(-factor)
    }

    #[inline]
    fn desaturate_fixed(self, amount: Self::Scalar) -> Self {
        self.saturate_fixed(-amount)
    }
}

/// Assigning operator for decreasing the saturation (or chroma) of a color.
///
/// The trait's functions are split into two groups of functions: relative and
/// fixed/absolute.
///
/// The relative function,
/// [`desaturate_assign`](DesaturateAssign::desaturate_assign), scales the
/// saturation towards the minimum saturation value. This means that for a color
/// with 50% saturation, if `desaturate_assign(0.5)` is applied to it, the color
/// will scale halfway to the minimum value of 0% resulting in a new saturation
/// value of 25%.
///
/// The fixed or absolute function,
/// [`desaturate_fixed_assign`](DesaturateAssign::desaturate_fixed_assign),
/// decreases the saturation by an amount that is independent of the current
/// saturation of the color. So for a color with 50% saturation, if
/// `desaturate_fixed_assign(0.5)` is applied to it, the color will have 50%
/// saturation removed from its saturation value resulting in a new value of 0%.
///
/// See also [`Desaturate`], [`Saturate`] and [`SaturateAssign`].
///
/// ```
/// use approx::assert_relative_eq;
/// use palette::{Hsv, DesaturateAssign};
///
/// let mut relative = Hsv::new_srgb(0.0, 0.5, 1.0);
/// relative.desaturate_assign(0.5);
///
/// let mut fixed = Hsv::new_srgb(0.0, 0.5, 1.0);
/// fixed.desaturate_fixed_assign(0.5);
///
/// assert_relative_eq!(relative.saturation, 0.25);
/// assert_relative_eq!(fixed.saturation, 0.0);
/// ```
///
/// `DesaturateAssign` is also implemented for `[T]`:
///
/// ```
/// use palette::{Hsl, DesaturateAssign};
///
/// let mut my_vec = vec![Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_array = [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(113.0, 0.5, 0.8)];
/// let mut my_slice = &mut [Hsl::new_srgb(104.0, 0.3, 0.8), Hsl::new_srgb(112.0, 0.5, 0.8)];
///
/// my_vec.desaturate_assign(0.5);
/// my_array.desaturate_assign(0.5);
/// my_slice.desaturate_assign(0.5);
/// ```
pub trait DesaturateAssign {
    /// The type of the desaturation modifier.
    type Scalar;

    /// Scale the color towards the minimum saturation by `factor`, a value
    /// ranging from `0.0` to `1.0`.
    ///
    /// ```
    /// use approx::assert_relative_eq;
    /// use palette::{Hsv, DesaturateAssign};
    ///
    /// let mut color = Hsv::new_srgb(0.0, 0.5, 0.5);
    /// color.desaturate_assign(0.5);
    /// assert_relative_eq!(color.saturation, 0.25);
    /// ```
    fn desaturate_assign(&mut self, factor: Self::Scalar);

    /// Increase the saturation by `amount`, a value ranging from `0.0` to
    /// `1.0`.
    ///
    /// ```
    /// use approx::assert_relative_eq;
    /// use palette::{Hsv, DesaturateAssign};
    ///
    /// let mut color = Hsv::new_srgb(0.0, 0.4, 0.5);
    /// color.desaturate_fixed_assign(0.2);
    /// assert_relative_eq!(color.saturation, 0.2);
    /// ```
    fn desaturate_fixed_assign(&mut self, amount: Self::Scalar);
}

impl<T> DesaturateAssign for T
where
    T: SaturateAssign + ?Sized,
    T::Scalar: Neg<Output = T::Scalar>,
{
    type Scalar = T::Scalar;

    #[inline]
    fn desaturate_assign(&mut self, factor: Self::Scalar) {
        self.saturate_assign(-factor);
    }

    #[inline]
    fn desaturate_fixed_assign(&mut self, amount: Self::Scalar) {
        self.saturate_fixed_assign(-amount);
    }
}

/// Extension trait for fixed size arrays.
///
/// ## Safety
///
/// * `Item` must be the type of the array's items (eg: `T` in `[T; N]`).
/// * `LENGTH` must be the length of the array (eg: `N` in `[T; N]`).
pub unsafe trait ArrayExt {
    /// The type of the array's items.
    type Item;

    /// The number of items in the array.
    const LENGTH: usize;
}

unsafe impl<T, const N: usize> ArrayExt for [T; N] {
    type Item = T;

    const LENGTH: usize = N;
}

/// Temporary helper trait for getting an array type of size `N + 1`.
///
/// ## Safety
///
/// * `Next` must have the same item type as `Self`.
/// * `Next` must be one item longer than `Self`.
pub unsafe trait NextArray {
    /// An array of size `N + 1`.
    type Next: ArrayExt;
}

macro_rules! impl_next_array {
    ($length: expr) => {};
    ($length: expr, $next_length: expr $(, $rest: expr)*) => {
        unsafe impl<T> NextArray for [T; $length] {
            type Next = [T; $next_length];
        }

        impl_next_array!($next_length $(, $rest)*);
    };
}

impl_next_array!(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17);

#[cfg(doctest)]
macro_rules! doctest {
    ($str: expr, $name: ident) => {
        #[doc = $str]
        mod $name {}
    };
}

// Makes doctest run tests on README.md.
#[cfg(doctest)]
doctest!(include_str!("../README.md"), readme);